Quick Contact Form at the Bottom of Every Page      01458223236

Pigging

Marine Fabrication is one of the GLOBAL leaders in the fabrication of pig launcher / receiver system.
In the context of pipelines refers to the practice of using pipeline inspection gauges or ‘pigs’ to perform various maintenance operations on a pipeline. This is done without stopping the flow of the product in the pipeline.
These operations include but are not limited to cleaning and inspecting of the pipeline. This is accomplished by inserting the pig into a ‘pig launcher’ (or ‘launching station’) – a funnel shaped Y section in the pipeline. The launcher / launching station is then closed and the pressure driven flow of the product in the pipeline is used to push it along down the pipe until it reaches the receiving trap – the ‘pig catcher’ (or receiving station).
If the pipeline contains butterfly valves, the pipeline cannot be pigged. Ball valves cause no problems because the inside diameter of the ball can be specified to be the same as that of the pipe (assuming they are full bore valves).
Pigging has been used for many years to clean larger diameter pipelines in the oil industry. Today, however, the use of smaller diameter pigging systems is now increasing in many continuous and batch process plants as plant operators search for increased efficiencies and reduced costs.
Pigging can be used for almost any section of the transfer process between, for example, blending, storage or filling systems. Pigging systems are already installed in industries handling products as diverse as lubricating oils, paints, chemicals, toiletries, cosmetics and foodstuffs.
Pigs are used in lube oil or painting blending: they are used to clean the pipes to avoid cross-contamination, and to empty the pipes into the product tanks (or sometimes to send a component back to its tank). Usually pigging is done at the beginning and at the end of each batch, but sometimes it is done in the midst of a batch, e.g. when producing a premix that will be used as an intermediate component.
Pigs are also used in oil and gas pipelines: they are used to clean the pipes but also there are “smart pigs” used to measure things like pipe thickness and corrosion along the pipeline. They usually do not interrupt production, though some product can be lost when the pig is extracted. They can also be used to separate different products in a multiproduct pipeline.

Pipeline Pigs Launcher and Receiver

Pigging in production environments

Product and time saving
A major advantage of piggable systems is the potential resulting product savings. At the end of each product transfer, it is possible to clear out the entire line contents with the pig, either forwards towards the receipt point, or backwards to the source tank. There is no requirement for extensive line flushing.
Without the need for line flushing, pigging offers the additional advantage of a much more rapid and reliable product changeover. Product sampling at the receipt point becomes faster because the interface between products is very clear, and the old method of checking at intervals, until the product is on-specification, is considerably shortened.
Pigging can also be operated totally by a programmable logic controller (PLC).
Environmental issues
Pigging has a significant role to play in reducing the environmental impact of batch operations. Traditionally, the only way that an operator of a batch process could ensure a product was completely cleared from a line was to flush the line with a cleaning agent such as water or a solvent or even the next product. This cleaning agent then had to be subjected to effluent treatment or solvent recovery. If product was used to clear the line, the contaminated finished product was downgraded or dumped. In some cases, the finished product could contain polychlorinated biphenyl (PCB), which has been found to be carcinogenic. All of these problems can now be eliminated due to the very precise interface produced by modern pigging systems.
Safety considerations
Pigging systems are designed so that the pig is loaded into the launcher, which is pressured up to launch the pig into the pipeline through a kicker line. In some cases, the pig is removed from the pipeline via the receiver at the end of each run. All systems must allow for the receipt of pigs at the launcher, as blockages in the pipeline may require the pigs to be pushed back to the launcher. Most of the time, systems are designed to pig the pipeline in either direction.
The pig is pushed either with an inert gas or a liquid; if pushed by gas, some systems can be adapted in the gas inlet in order to ensure pig’s constant speed, whatever the pressure drop is. The pigs must be removed, as many pigs are rented, pigs wear and must be replaced, and cleaning pigs push contaminants from the pipeline such as wax, foreign objects, hydrates, etc., which must be removed from the pipeline. There are inherent risks in opening the barrel to atmosphere and care must be taken to ensure that the barrel is depressured prior to opening. If the barrel is not completely depressured, the pig can be ejected from the barrel and operators have been severely injured when standing in front of an open pig door. When the product is sour, the barrel should be evacuated to a flare system where the sour gas is burnt. Operators should be wearing a self-contained breathing apparatus when working on sour systems.
A few pigging systems utilize a “captive pig”, and the pipeline is only opened up very occasionally to check the condition of the pig. At all other times, the pig is shuttled up and down the pipeline at the end of each transfer, and the pipeline itself is never opened up during process operation. These systems are not common.

914mm x 24mm diameter wall pig launchers

ntelligent pigging
Inserting a pig into a natural gas pipeline
Modern intelligent pigs are highly sophisticated instruments that vary in technology and complexity by the intended use and by manufacturer. An intelligent pig, or smart pig, includes electronics and sensors that collects various forms of data during the trip through the pipeline.
The electronics are sealed to prevent leakage of the pipeline product into the electronics since products can range from highly basic to highly acidic and can be of extremely high temperature. Many pigs use specific materials according to the product in the pipeline. Power for the electronics is provided by onboard batteries which are also sealed. Data recording may be by various means ranging from analog tape, digital tape, or solid state memory in more modern digital units.
The technology used to accomplish the service varies by the service required and the design of the pig, each pigging service provider may have unique and proprietary technologies to accomplish the service. Surface pitting and corrosion, as well as cracks and weld defects in steel/ferrous pipelines are often detected using magnetic flux leakage (MFL) pigs. Other “smart” pigs use electromagnetic acoustic transducers to detect pipe defects. Caliper pigs can measure the “roundness” of the pipeline to determine areas of crushing or other deformations. Some smart pigs can combine technologies such as MFL and Caliper into a single tool. Recent trials of pigs using acoustic resonance technology have been reported.
During the pigging run the pig is unable to directly communicate with the outside world due to the distance underground or underwater and/or materials that the pipe is made of. For example, steel pipelines effectively prevent any reliable radio communications outside the pipe. It is therefore necessary that the pig use internal means to record its own movement during the trip. This may be done by gyroscope-assisted tilt sensors, odometers and other technologies. The pig will record this positional data so that the distance it moves along with any bends can be interpreted later to determine the exact path taken.
Location verification is often accomplished by surface instruments that record the pig’s passage by either audible or gravinometric (or other) means. The sensors will record when they detect passage of the pig; this is then compared to the internal record for verification or adjustment. The external sensors may have GPS capability to assist in their location or even to transmit the pig’s passage, but the pig itself usually cannot use GPS as it requires being able to receive the satellite signals.
After the pigging run has been completed, the positional data is combined with the pipeline evaluation data (corrosion, cracks, etc.) to provide a location-specific defect map and characterization. In other words, the combined data will tell the operator the location and type and size of each pipe defect. This is used to judge the severity of the defect and help repair crews locate and repair the defect quickly without having to dig up excessive amounts of pipeline. By evaluating the rate of change of a particular defect over several years, proactive plans can be made to repair the pipeline before any leakage or environmental damage occurs.

Product Range

  • Sub Sea Launcher / Receivers
  • Topside Launcher / Receivers
  • Skid Mounted Launcher / Receivers
  • Laydown Heads
  • Abandonment / Recovery Heads
  • Sphere Release Mechanisms
  • Pig Handling Equipment
  • Barred Tees
  • Welded Metal Product
  • Hot-Tap Fittings
  • Pipeline Repair and Maintenance Products
  • Pigging Product
  • Pig Signaler and Pig Tracking Products

Working Towards